Mathematics
Клопский, Скопец, Ягодовский. Геометрия 9-10 класс. М. 1978. Москва: Просвещение. 1978
Status: очень хорошее, на фото
Кальницкий Л.А., Добротин Д.А., Жевержеев В.Ф. . Специальный курс высшей математики для ВТУЗов.. 1976
Description: Прикладные вопросы анализа. М. Высшая школа. 1976г. 389 с. Палiтурка / переплет: Твердый, Слегка увеличенный формат. Предлагаемая книга задумана как вторая часть книги В. Ф.Жевержеева, Л. А. Кальницкого, Н. А.-Сапогова «Специальный курс высшей математики для втузов», выпущенной издательством «Высшая школа» в 1970 году. Авторы исходили из тех же методических положений, что и при написании первой части книги: .доступно, но на достаточно хорошем научном уровне изложить разделы математического анализа, необходимые студентам и аспирантам втузов и инженерно-техническим работникам, желающим повысить свои математические знания. В .дальнейшем изложении ссылки на первую часть книги отмечены буквами С. К. (специальный курс), с указанием пункта или страницы. Эта книга прежде всего учебник, с помощью которого студенты и аспиранты технических учебных заведений должны иметь возможность ознакомиться с основными принципиальными- вопросами рассматриваемых математических методов. Но авторы считают, что учебник, трактующий прикладные вопросы математического анализа, должен быть и руководством к действию. Поэтому в некоторых главах значительное внимание уделено практической стороне дела: описаны вычислительные схемы, даны советы практического характера. В книгу включены некоторые вопросы или мало затрагиваемые во втузовских курсах или излагаемые в другом плане: вопросы устойчивости, интерполирование с кратными узлами, численное решение алгебраических уравнений разложением на квадратичные множители, применение многочленов Чебышева к задачам вычислительного анализа и ряд других. Такие вопросы, как критерий устойчивости Попова, численные интегральные преобразования и некоторые другие,, излагаются в учебной литературе впервые. Наконец, изложение некоторых вопросов носит информативный характер, имеет целью привлечь внимание читателей к этим методам, указать на возможность их применения, дать стимул к дальнейшему изучению. К таким вопросам относятся, например, численные преобразования.
Барр Ст.. Россыпи головоломок . Москва: Мир. 1978
Status: Небольшое повреждение края обреза задней крышки обложки.
Нестеренко Ю.В.,Олехник С.Н.,Потапов М.К. . Задачи вступительных экзаменов по математике.. 1986
Description: 3-е изд., доп. М.: Наука 1986г. 512с Мягкий переплет,, Увеличенный формат. В издании собрано около 1000 задач, предложенных на вступительных экзаменах на 13 факультетах Московского государственного университета в 1977-1979 годах. Третье издание дополнено вариантами заданий, предложенных в МГУ в 1982-1985 годах. Многие задачи сопровождаются подробными решениями, остальные снабжены ответами и указаниями.
Горнштейн П., Поляк Н., Тульчи.. Решение конкурсных задач по математике. (М.И. Сканави.). 1992
Description: Горнштейн П., Поляк Н., ТульчиРешение конкурсных задач по математике нский В. из сборника под редакцией М.И. Сканави. Группа В. Киев РИА Текст, МП ОКО 1992г. 246 с. Палiтурка / переплет: Мягкий, обычный формат. В пособии содержатся решения задач повышенной трудности из известного `Сборника конкурсных задач по математике для поступающих во втузы` под редакцией М.И. Сканави. Для абитуриентов, слушателей подготовительных курсов, преподавателей математики, репетиторов.
Егерев В.К., Кордемский Б.А., Зайцев В.В. . Сборник задач по математике для поступающих в вузы. . 1997
Description: Под ред. М.И. Сканави. К. Каннон 1997г. 528 с. Палiтурка / переплет: твердый, обычный формат. Сборник составлен в соответствии с программой по математике для поступающих в высшие учебные заведения. Он содержит две части: ``Арифметика, алгебра, геометрия`` (часть I) и ``Алгебра, геометрия (дополнительные задачи). Начала анализа. Координаты и векторы`` (часть II). Все задачи разделены на три группы по уровню их сложности. Рассчитан на учащихся, абитуриентов, учителей подготовительных отделений и широкий круг читателей, желающих улучшить свои знания по математике.
Боревич З.И., Шафаревич И.Г.. Теория чисел.. М.: Наука. 1972 498s.
Description: Немного ув.формат. Издание 2-е. В книге излагается ряд методов современной теории чисел. Изложение иллюстрируется рассмотрением большого числа конкретных теоретико-числовых вопросов, относящихся главным образом к неопределенным уравнениям. Основное внимание уделено алгебраическим методам, но заметное место занимают также геометрический и аналитический методы. В книге изложены как классические вопросы, так и некоторые новейшие достижения. Книга рассчитана на студентов, аспирантов и научных работников, работающих в области алгебры и теории чисел. Для ее понимания достаточно знакомства с математикой в объеме первых двух курсов физико-математических факультетов университетов или педагогических институтов.
Status: очень хорошее
Бурбаки Н.. Интегрирование: Векторное интегрирование. Мера Хаара. Свертка и представления.. М.: Наука. Гл. ред. физ.-мат. лит.. 1970 320s.
Description: Немного ув.формат. Без суперобложки. Пер. с фр. Под ред. Д.А. Райкова и С.Б. Стечкина. Серия: Элементы математики. Группа французских математиков, объединенная под псевдонимом «Бурбаки», поставила перед собой цель - написать под общим заглавием «Элементы математики» полный трактат по современной математике. Многие томов этого трактата уже вышло во Франции, вызвав большой интерес математиков всего мира как новизной изложения, так и высоким научным уровнем. Настоящая книга посвящена разным аспектам проблемы интегрирования. Книга рассчитана на математиков - научных работников, аспирантов и студентов старших курсов университетов и пединститутов. Тираж 35 тыс.экз.
Status: хорошее
Марон. Дифференциальное и интегральное исчисление в примерах и задачах. Ув формат. Москва: Наука. 1970
Description: Увеличенный формат
Status: очень хорошее
Попов Ю.П., Пухначев Ю.В.. Математика в образах.. 1989
Description: Научно-популярное издание. М.: Знание 1989г. 208 с. Палiтурка / переплет: Мягкий, обычный формат. Математические формулы - лишь удобный язык для изложения идей и методов математики. Сами же эти идеи и методы можно описать, используя привычные и наглядные образы из окружающей жизни. Следуя этому принципу авторы в доступной и увлекательной форме излагают основные понятия теории множеств, числовых рядов, дифференциального и интегрального исчисления и других разделов математики. Книга рассчитана на слушателей народных университетов естественнонаучных знаний и широкий круг читателей.
Бом Д.. Общая теория коллективных переменных.. 1964
Description: Перевод с английского. Серия: `Теоретическая физика`. М.: Мир, 1964г. 152 с. мягкий переплет, Обычный формат. Настоящая книга представляет собой перевод курса лекций известного физика-теоретика Д. Бома, прочитанных в летней школе теоретической физики в Лезуш (Франция). Читателям уже знакома ранее вышедшая книга Д. Бома `Квантовая теория` (Физматгиз, 1961 г.). Предлагаемые лекции содержат систематическое изложение одного из методов теоретического исследования системы заряженных частиц, а именно метода коллективных переменных, широко применяемого, в частности, в физике твердого тела и физике плазмы. В книге рассматриваются в основном классические системы, хотя затрагиваются также и квантовые (ферми-системы). В целом книга рассчитана на физиков - как теоретиков, так и экспериментаторов, желающих познакомиться с этим методом и облегчить себе изучение оригинальных журнальных статей.
Реньи А.. Диалоги о математике. . 1969
Description: Пер. с англ. Д.Б. Гнеденко, Е.А. Масловой. Серия: В мире науки и техники. М. Мир 1969г. 96 с., илл. Палiтурка / переплет: мягкий, обычный формат. Предлагаемая вниманию читателя книга написана известным венгерским математиком, профессором Будапештского университета Альфредом Реньи, и посвящена многочисленным философским проблемам математики. Каков предмет математики? Каково ее отношение к действительности? Как возникают ее понятия? На эти и многие другие вопросы автор дает определенные и обоснованные ответы. А.Реньи, благодаря оригинальной форме изложения, не поучает читателя, а как бы беседует с ним, заранее предугадывая возможные сомнения, и в результате читатель сам становится участником диалога и воспринимает обсуждаемые проблемы как близкие своим интересам. Книга предназначена самому широкому кругу читателей, интересующихся историей и методологией математики.
Белов В.В., Воробьев Е.М.. Сборник задач по дополнительным главам математической физики.. 1978
Description: Учебное пособие для втузов. М.: Высшая школа, 1978г. 271 с., илл. твердый переплет,, Обычный формат. В книге изложены некоторые современные методы математической физики: опративные методы решения дифференциальных и разностных уравнений, методы интегрирования уравнений Гамильтона-Якоби с помощью лагранжевых многообразий, метод ВКБ и метод канонического оператора Маслова.
Проф. А.К. Сушкевич. Теория обобщенных групп. Харьков - Киев: Научно-техническое издательство Украины. 1937 175s.
Description: Настоящая монография представляет собой, быть может, первое по времени, связное изложение теории всех типов обобщенных групп. Сюда вошли как мои собственные исследования, так и исследования других математиков, посвященные обобщенным группам. Для чтения этой книги, кроме общей математической культуры, требуется только знакомство с классической теорией обычных групп. Оглавление:1.Действия с одним элементом. 2.Действия с двумя елементами. 3.Конечные группы без закона однозначной обратимости. 4.Бесконечные группы без закона неограниченной обратимости.5.Группы, стоящие в связи с предыдущими. 6.Новые типы обобщенных групп. 7.Действия над n елементами.
Status: хорошее
Description of seller: Настоящий труд предназначается для всех любителей групп, начиная от студентов старших курсов физматов и кончая квалифицированными математиками. Далее. тираж 2000 экз.
Романовский П.И.. Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа. . 1964
Description: Романовский П.И. Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа. Издание 4-е. Избранные главы высшей математики для инженеров и студентов ВТУЗов М. Физматгиз 1964г. 304 с. Палiтурка / переплет: Твердый, Обычный формат.
Расулов М.Л.. Применение метода контурного интеграла. 1975
Description: к решению задач для параболических систем второго порядка. М. Наука 1975г. 256с. твердый переплет, Обычный формат. Монография состоит из двух частей. Первая посвящена систематическому изложению разработанного автором вычетного метода и его применению к решению широких классов задач дифференциальных уравнений, не поддающихся решению известными методами. Во второй части дается новый метод, названный методом контурного интеграла, в применении к исследованию весьма общих линейных смешанных задач дифференциальных уравнений.
Шварц Л.. Комплексные многообразия. Эллиптические уравнения.. 1964
Description: Серия: Библиотека сборника Математика. Перевод с испанского. М. Мир 1964г. 212 с. Мягкий переплет, Обычный формат. Книга представляет собой перевод лекций известного французского математика, посвященных комплексным аналитическим многообразиям и теории эллиптических уравнений на таких многообразиях.
Глушик М.М., Копич І.М. та ін.. Математичне програмування.. Львів: Новий світ - 2000. 2005 216s.
Description: Збільшениий формат. Навчальний посібник. Рекомендовано Міністерством освіти та науки України.
Status: Практично відмінний стан. Є штамп розф. бібл. Посібник містить основні розділи курсу "Математичне програмування" для студентів економічних спеціальностей. Кожна тема супроводжується прикладами та контрольними запитаннями. Запропонований набір практичних завдань буде сприяти кращому засвоєнню та розумінню основних теоретичних понять.
Макаричев. Алгебра. Підручник для 6 класу 1981. КИЇВ: Радянська школа. 181
Status: очень хорошее
Зубарева. Уроки математики в 5 классе. Серия Библиотека передового опыта. 1973. Киев: Радянська школа. 1973
Status: очень хорошее
Дувинчук. Уроки з математики в 5 класі. 1972 . КИЇВ: Радянська школа. 1972
Description: для учнів
Status: очень хорошее
Чистяков В. Д.. Сборник старинных задач по элементарной математике. 1962
Description: Чистяков В. Д. Сборник старинных задач по элементарной математике с историческими экскурсами и подробными решениями. Минск Издательство МВССПО БССР 1962г. 204 с. Мягкий переплет,, уменьшенный формат. Любопытное и познавательное издание для всех любителей истории развития точных наук. Представлены тексты стариных задач по элементарной математике, сгруппированые по отдельным разделам: Задачи Вавилона. Задачи Египтпа. Задачи Греции. Задачи Китая.
Петровский И.Г. . Лекции по теории обыкновенных дифференциальных уравнений.. 1964
Description: Издание 5-е, дополненное. М. Наука 1964г. 272 с. Палiтурка / переплет: твердый, обычный формат. Эта книга написана выдающимся ученым-математиком, академиком И.Г.Петровским (1901-1973), и основана на курсе лекций, прочитанных им в Саратовском и Московском университетах в 1936-1937 годах. С тех пор она выдержала несколько изданий и стала классическим трудом по теории дифференциальных уравнений. Автор не стремился рассказать о всех отделах теории дифференциальных уравнений, а выбрал несколько вопросов, постаравшись изложить их по возможности цельно и строго. К главам и отдельным параграфам прилагаются задачи, помогающие закрепить усвоенный материал. Рекомендуется студентам университетов, аспирантам и специалистам - математикам и физикам. Может использоваться в качестве учебника для механико-математических и физических факультетов.
Винер Н. . Интеграл Фурье и некоторые методы его приложения. 1963
Description: М., Физматгиз, 1963 г. 256 с.
Постников М. М. . Аналитическая геометрия. Линейная алгебра. Дифференциальная геометрия.. 1979
Description: Семестры I, II, 2-е изд., 2-е изд ( переработанное и дополненное )., 1-е изд. Учебное пособие для студентов вузов, обучающихся по специальности «Математика». М. Наука. 1979,г. 416., 400с., Палiтурка / переплет: Твердый, обычный формат.